Acid Strength and Structure

- The tendency of an acid to lose a proton to solvent water, as indicated by its K_a value, depends upon two principal factors:
 - 1. The strength of the H–A bond.
 - ✓ The weaker the bond, the greater is the tendency to lose protons, and the larger K_a will be.
 - 2. The stability of the conjugate base in solution.
 - ✓ The more stable the conjugate base A^- , the greater is the tendency to lose protons, and the larger K_a will be.

Binary Acid Strengths

- Acid strengths of *binary acids*, H_nX , increase as the H-X bond weakens. This results in the following trends:
 - 1. The larger the X atom, the weaker the H–X bond is and the stronger the acid is.

$$H_2O < H_2S < H_2Se < H_2Te$$

- 2. Among acids with similar H–X bond strengths, the more electronegative the X atom, the more polar the H–X bond will be.
 - ✓ This makes the H atom more positive, facilitating its removal by solvent water.
 - ✓ Thus, across a period,

$$NH_3 < H_2O < HF$$

Oxoacids, HOXO,

1. Among acids of the same structure type, acid strength increases with the electronegativity of the central X atom.

$$H_2SeO_4 \le H_2SO_4$$

- ✓ The acidic H atom is always part of an –OH group.
- ✓ As electronegativity of X increases, the polarity of the –O–H bond increases, making removal of H⁺ by solvent water more favorable.

Oxoacids, HOXO,

2. Acidity increases as the number of terminal (or non-hydroxy) oxygen atoms attached to X increases.

H—O—Cl: H—O—Cl—O:
$$K_a = 3.2 \times 10^{-8}$$
 $K_a = 1.1 \times 10^{-2}$

✓ The electron withdrawing ability of the terminal —O atoms increases the formal charge on the central X atom, decreasing electron density in the —O—H bond, thereby weakening it. This is an example of an *inductive effect*.

Oxoacids, HOXO_n

The number of terminal (non-hydroxy) oxygen atoms in the oxoacids bears a strong correlation to K_a .

–O atoms	K_a range	Strength
0	$10^{-7} - 10^{-10}$	very weak
1	$10^{-1} - 10^{-4}$	weak
2	>10 ⁻¹	strong
3	>>1	very strong

Oxoacids, HOXO_n

- Some care must be used in predicting acid strengths from formulas, because the actual structure may not be apparent.
 - ✓ For example, H₃PO₄, H₃PO₃, and H₃PO₂ all have only one terminal –O in their structures and therefore have similar strengths.

Carboxylic Acids, RCO₂H

Carboxylic acids, an important class of organic acids, contain the carboxyl group, -CO₂H.

HCO₂H CH₃CO₂H formic acid acetic acid

CH₃CH₂CO₂H CH₃CH₂CO₂H propionic acid butyric acid

C₆H₅CO₂H HO₂CCO₂H benzoic acid oxalic acid (diprotic)

Acidity of the Carboxyl Group

• The acidity of the carboxyl group is partly due to the electronegativity of the double-bonded oxygen, which withdraws electron density from the –O–H bond, thereby facilitating the loss of H⁺ to solvent water.

• When a carboxyl group loses H⁺, it forms a resonance stabilized anion, called a *carboxylate ion*:

Enhancing Carboxylic Acid Strength

- The acidity of a carboxylic acid can be enhanced by adding electronegative atoms to the rest of the molecule.
 - ✓ The electron-withdrawing ability of electronegative atoms weakens the −O−H bond (inductive effect), thereby enhancing the ability of solvent water to remove H⁺.

Acid	$K_{\rm a}$
CH ₃ CO ₂ H	1.77×10^{-5}
BrCH ₂ CO ₂ H	2.05×10^{-3}
C1CH ₂ CO ₂ H	1.40×10^{-3}
Cl ₂ CHCO ₂ H	3.32×10^{-2}
Cl ₃ CCO ₂ H	2×10^{-1}
F ₃ CCO ₂ H	5×10^{-1}

Hydrated Cations

- The *total hydration sphere* is the total number of water molecules associated with an ion in solution.
 - ✓ The number of water molecules in the total hydration sphere is determined by the *charge density* of the ion.

Crystallographic and Hydrated Radii of Alkali Metal Ions

Ion	Crystal radii, Å	Approx. hydrated radii, Å	Approx. Hydration Number
Li ⁺	0.60	3.40	25
Na ⁺	0.95	2.76	17
K^{+}	1.33	2.32	11
Rb^+	1.48	2.28	10
Cs ⁺	1.69	2.28	10

First Hydration Sphere

- The *first hydration sphere* is defined as the number of water molecules in *direct contact* with the ion.
 - ✓ The number of water molecules in the first hydration sphere depends only on the size of the ion.
 - ✓ Typical cations have first hydration spheres with four to six water molecules; e.g.,

$$Be(H_2O)_4^{2+} Mg(H_2O)_6^{2+} Al(H_2O)_6^{3+}$$
 $Hg(H_2O)_6^{2+} Cr(H_2O)_6^{3+}$

Acidic Hydrated Cations

Ion-dipole attractions have an inductive effect on the O–H bonds of the water molecules in the first hydration sphere, which weakens the bond and may allow H⁺ to be lost to solvent water.

water of hydration

$$Be(H_2O)_4^{2+} + H_2O \Rightarrow Be(H_2O)_3OH^+ + H_3O^+ \qquad K_a = \sim 1 \times 10^{-5}$$

$$Cr(H_2O)_6^{3+} + H_2O \Rightarrow Cr(H_2O)_5OH^{2+} + H_3O^+ \qquad K_a = 1.6 \times 10^{-4}$$

✓ This means that when we dissolve an ionic compound in water, the cation may affect the acid-base character of the solution.

Acidic and Non-Acidic Hydrated Cations

- As the charge density experienced by water molecules in the first hydration sphere increases the acidity increases.
 - ✓ Smaller and more highly charged cations tend to be acidic.
 - ✓ The alkali and alkaline earth cations (with the exceptions of Be²⁺ and Mg²⁺) are too large and too lowly charged to have any appreciable acidity.
 - ✓ Transition metal cations tend to be more acidic than non-transition metal ions of comparable charge and size, because the poorer shielding d-subshell allows more of the nuclear charge to be experienced by the attached water molecules; i.e., they have higher effective nuclear charges, Z^* .

Hydrated Cations as Polyprotic Acids

Hydrated cations with appreciable acidity often act as polyprotic acids.

✓ Hydrated Al³+ can act as a tetraprotic acid:

$$Al(H_2O)_6^{3+} + H_2O \Rightarrow Al(H_2O)_5OH^{2+} + H_3O^{+}$$

$$Al(H_2O)_5OH^{2+} + H_2O \Rightarrow Al(H_2O)_4(OH)_2^+ + H_3O^+$$

$$Al(H_2O)_4(OH)_2^+ + H_2O \Rightarrow Al(H_2O)_3(OH)_3(s) + H_3O^+$$

$$Al(H_2O)_3(OH)_3(s) + H_2O \Rightarrow Al(H_2O)_2(OH)_4^- + H_3O^+$$

✓ The addition of a strong base, such as OH⁻, is necessary to drive the equilibria to the right by removal of the H₃O⁺ by neutralization.

Lewis Acid-Base Theory

G. N. Lewis

Lewis acid - an electron-pair acceptor

Lewis base - an electron-pair donor

- ✓ Lewis acids are "seeking" an electron-pair, and so are called *electrophiles*.
- ✓ Lewis bases are "seeking" a nucleus to give an electronpair, and so are called *nucleophiles*.

(Gk. philos, beloved, dear)

✓ The product of a Lewis acid-base reaction is often called an *adduct*.

Comparison of Theories

✓ Acids and bases in Arrhenius and Brønsted-Lowry theories are also acids and bases in Lewis theory:

✓ Some acid-base reactions in Lewis theory are not seen as such by the other theories:

$$:NH_3 + BF_3 \rightarrow H_3N:BF_3$$

base acid adduct

Examples of Lewis Acid-Base Reactions

$$Co^{3+}$$
 + $6 H_2O$ \rightarrow $[Co(H_2O)_6]^{3+}$ acid base adduct

 SbF_5 + $F^- \rightarrow$ $[SbF_6]^-$ acid base adduct

 CO_2 + $OH^- \rightarrow HCO_3^-$ acid base adduct

$$\ddot{\ddot{o}} = C = \ddot{\ddot{o}} + \ominus_{\ddot{\bullet}} \ddot{\ddot{o}} = H \rightarrow \uparrow$$

$$\ddot{\ddot{o}} = C = \ddot{\ddot{o}} + \ominus_{\ddot{\bullet}} \ddot{\ddot{o}} = H$$

$$\ddot{\ddot{o}} = C = \ddot{\ddot{o}} + \Box_{\ddot{\bullet}} \ddot{\ddot{o}} = C$$